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Abstract11

12

In the last decade advances in surveying technology have opened up the possibility of13

representing topography and monitoring surface changes over experimental plots (<10 m2) in high14

resolution (~103 points m-1). Yet the representativeness of these small plots is limited. With15

‘Structure-from-Motion’ (SfM) and ‘Multi-View Stereo’ (MVS) techniques now becoming part of the16

geomorphologist’s toolkit, there is potential to expand further the scale at which we characterise17

topography and monitor geomorphic change morphometrically. Moving beyond previous plot-scale18

work using Terrestrial Laser Scanning (TLS) surveys, this paper validates robustly a number of19

SfM-MVS surveys against total station and extensive TLS data at three nested scales: plots (<3020

m2) within a small catchment (4710 m2) within an eroding marl badland landscape (~1 km2). SfM21

surveys from a number of platforms are evaluated based on: (i) topography; (ii) sub-grid22

roughness; (iii) change-detection capabilities at an annual scale. Oblique ground-based images23

can provide a high-quality surface equivalent to TLS at the plot scale, but become unreliable over24

larger areas of complex terrain. Degradation of surface quality with range is observed clearly for25

SfM models derived from aerial imagery. The modelling findings of James and Robson (2014) are26

proven empirically as a piloted gyrocopter survey at 50 m altitude with convergent off-nadir27

imagery provided higher quality data than an UAV flying at the same height and collecting vertical28
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imagery. For soil erosion monitoring, SfM can provide comparable data to TLS only from small29

survey ranges (~ 5 m) and is best limited to survey ranges of ~10-20 m. Synthesis of these results30

with existing validation studies shows a clear degradation of root-mean squared error (RMSE) with31

survey range, with a median ratio between RMSE and survey range of 1:639, and highlights the32

effect of the validation method (e.g. point-cloud or raster-based) on the estimated quality.33

34

Keywords: badlands; terrestrial laser scanning (TLS); Structure from Motion (SfM); topographic35

survey; sediment budget.36

37

1. Rationale38

39

Badlands can be described as well-dissected areas of unconsolidated sediment with sparse or40

absent vegetation that are unable to support agriculture (i.e. Bryan and Yair, 1982). These highly41

erodible landscapes make disproportionate contributions to catchment scale sediment budgets42

(e.g. García-Ruiz et al., 2008; López-Tarazón et al., 2012), control downstream processes in river-43

channels (e.g. Buendia et al., 2013) and, ultimately, can cause negative consequences to44

downstream infrastructure (e.g. reservoir siltation; Avendaño et al., 2000). Erosion risk maps and45

models (e.g. PESERA; Kirkby et al., 2004) can provide a broad-scale assessment of soil erosion46

rates, but any such models require calibration and validation using observed soil erosion rates47

under different environments (e.g. climatic conditions) and over representative (large) spatial48

scales (e.g. catchment scale). New techniques of topographic data acquisition have the potential to49

deliver this data. This study validates topographic data derived from Structure from Motion50

photogrammetry at three nested scales to assess the scale at which it can be applied in studies of51

soil erosion.52

53

1.1. Measuring erosion in dynamic landscapes54

55



3

A number of different methods of measuring and monitoring erosion exist. Erosion pins are used56

commonly to measure the erosion and deposition directly through observed changes in surface57

level at a given point (e.g. Clarke and Rendell, 2006; Della Seta et al., 2009; Francke, 2009).58

Despite the observed spatial variability in badland erosion rates (e.g. Kuhn and Yair, 2004; Solé-59

Benet et al., 1997), the point measurements are typically interpolated, but only over relatively small60

areas. Over similar-sized areas (up to ~10 m downslope length), bounded plots with sediment61

collectors catch exported sediment directly (e.g. Lázaro et al., 2008). Again, extrapolation of such62

plots is problematic (see Boardman, 2006; Boix-Fayos et al., 2006), collectors can fill up rapidly in63

highly erodible landscapes (Vericat et al., 2014), and data integrate all upslope processes at a64

single point. Sediment flux is often measured at gauging stations through continuous turbidity65

records (e.g. Cantón et al., 2001; Mathys et al., 2003) and at larger spatial and temporal scales66

still, repeat bathymetric surveys of reservoirs or check dams can provide estimates of sediment67

yield (e.g. de Vente et al., 2005; Batalla and Vericat, 2011). This indirect morphometric approach68

can also be applied to eroding surfaces at multiple spatial and temporal scales. Repeat69

topographic surveys have been used to measure soil loss volumes both at plot scales using70

microprofile meters (e.g. Descroix and Claude, 2002; Sirvent et al., 1997) and at large scales using71

Terrestrial Laser Scanning (TLS) (e.g. Vericat et al., 2014) or even larger by means of aerial72

photogrammetry (e.g. Ciccacci et al., 2008).73

74

Each technique has different strengths and weaknesses, and each one may measure the result of75

different processes. Discrepancies between these methods have been noted previously (Poesen76

and Hooke, 1997). Nadal-Romero et al. (2011, 2014) compile sediment yield measurements over77

87 study sites of eroding Mediterranean badlands and found statistically significant differences in78

sediment yield measurements obtained from different methods. Yet since no single method covers79

all spatial scales it is possible that the reported differences in sediment yield between methods80

actually reflect the different processes that operate at different catchment sizes. At larger scales,81

footslopes and concavities and other sediment sinks become incorporated into the study area.82

Sediment connectivity becomes an important factor as the entire range of catchment processes is83

studied rather than just interrill erosion (Faulkner, 2008; Godfrey et al., 2008; Bracken et al., 2014).84
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85

Clarification of such scale dependencies requires the application of a single method of monitoring86

erosion over a wide range of spatial and temporal scales. A substantial advantage of the87

morphometric method (i.e. comparing topographic models obtained at different periods) is that sub-88

catchments, discrete areas, or even single grid cells of a large study area can be isolated and89

examined at no extra field cost. Airborne LiDAR has been already applied to examine the90

topographic structure of badland areas (Bretar et al., 2009; Lopez-Saez et al., 2011; Thommeret et91

al., 2010), while Vericat et al. (2014) recently presented the use of TLS to produce a fully92

distributed morphometric sediment budget of a small (36 m2) eroding badland area.93

94

The challenge of using topographic survey techniques for erosion monitoring is to design and apply95

a methodology that provides meaningful and high-quality data over a range of spatial scales.96

Structure-from-Motion with Multi-View Stereo (SfM-MVS) offers a potential solution to the problem97

of acquiring such high resolution topographic data over a wide range of scales; however, validation98

of this technique at multiple scales is in its infancy.99

100

1.2. Validation of Structure-from-Motion101

102

Using a number of standard camera images of a single scene, Structure-from-Motion (SfM) can103

reconstruct simultaneously camera pose, scene geometry and internal camera parameters. Full104

details of different steps of the SfM-MVS workflow can be found in Lowe (2004), Snavely et al.105

(2008), Furukawa and Ponce, (2010) and James and Robson (2012). In short, features in each106

image are identified and matched. A bundle adjustment algorithm is used to produce jointly optimal107

estimates of 3D structure and viewing parameters (Triggs et al., 2000). This SfM sparse point108

cloud has been used as an end point in itself (e.g. Fonstad et al., 2013). However, SfM is often109

paired with multi-view stereo (MVS) which use the known camera locations to reconstruct a denser110

point cloud (see Furukawa and Ponce, 2010). Finally, the resultant dense point cloud must be111

given a scale and georeferenced using ground control points visible in images or point clouds. All112
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SfM-derived data products herein are technically SfM-MVS data, though, following the emerging113

convention, simply ‘SfM’ is also used as shorthand.114

115

In combination, SfM-MVS provides high-resolution topographic data which, in recent years, has116

been applied and tested in a range of geomorphological settings including volcanic bomb hand117

samples (e.g. James and Robson, 2012), agricultural fields (e.g. Ouédraogo et al., 2014; Eltner et118

al., 2014), eroded gullies (e.g. Castillo et al., 2012; Frankl et al., 2015), exposed bars of braided119

rivers (e.g. Javernick et al., 2014), high water marks of recently flooded ephemeral rivers (e.g.120

Smith et al., 2014), submerged gravel bed rivers (e.g. Woodget et al., 2014), eroding cliffs (e.g.121

James and Quinton, 2013), alluvial fans (e.g. Micheletti et al., 2014), lava flows (e.g. Tuffen et al.,122

2013), glacial moraines (e.g. Westoby et al., 2012; Tonkin et al., 2014), landslide displacements123

(e.g. Lucieer et al., 2013), and volcanic craters (e.g. James and Varley, 2012).124

125

Sub-grid data products extracted from point clouds are utilised increasingly in geomorphology (see126

Smith, 2014 for a review). Moreover, topographic change detection protocols, as described by127

Wheaton et al. (2010), utilise sub-grid roughness as an error term to determine the minimum level128

of detection of topographic changes estimated by differencing digital elevation models (DEMs)129

obtained at different periods. Thus, a thorough validation of the capability of SfM-MVS surveys to130

replace existing survey methods requires a detailed analysis of the precision of this approach at131

the scale required for a particular application.132

133

Errors in SfM-MVS surveys are related to a number of factors, including the camera used134

(Micheletti et al., 2014), number and resolution of images acquired, distribution of perspectives in135

those images (James and Robson, 2014), processing software (particularly the number of136

parameters used in the camera model; James and Robson, 2012; Ouédraogo et al., 2014) and the137

distribution and quality of ground control points used for georeferencing (James and Robson,138

2012). However, although the source of error is variable, it appears that the range at which the139

pictures are acquired is a particularly important factor in determining the resultant errors, with sub-140

m range surveys (i.e. <100 mm/pixel photography) exhibiting sub-mm errors and km-range surveys141
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(i.e. > 101 mm/pixel) exhibiting m-scale errors. Clearly, the survey range achievable logistically is142

controlled by the spatial coverage of the surveys.143

144

Overall, SfM has substantial potential to revolutionise the acquisition and accessibility of high145

resolution topographic data, potentially permitting the study of erosion rates over a range of spatial146

scales with a single technique. With a nested survey design and three scales of enquiry, ranging147

from experimental plots to experimental landscapes, this paper makes a substantial contribution to148

the validation of this approach. The aim of this study is to provide a detailed examination of the149

ability of SfM-MVS to represent topography and roughness and to detect reliably small topographic150

changes in a complex badland setting. To achieve this, the most extensive and detailed repeat151

TLS survey of an eroding badland conducted to date is used as a reference dataset.152

153

Four specific objectives achieve this aim:154

(1) To provide a robust validation of the capability of SfM-MVS as a high resolution topographic155

survey technique through quantitative analysis of standard derived topographic data156

products including (a) topography (DEMs); (b) sub-grid surface roughness; and (c)157

distributed topographic changes (erosion and deposition, i.e. sediment budgets);158

(2) To examine the effect of survey range and extent on the results of (1);159

(3) To examine the effect of the type of validation dataset on the results of (1);160

(4) To integrate these findings with those of existing SfM-MVS validation studies to elucidate161

the scale-effects limiting the accuracy of SfM-MVS surveys.162

163

The paper is structured as follows: the experimental badland is described in section 2. Field data164

collection is described in section 3.1. The post-processing steps are then described in section 3.2.165

Validation of topography is presented both for point-based total station data (section 4.2) and TLS-166

based DEMs (section 4.3). The latter is then used as a benchmark dataset against which to test167

the ability of SfM-MVS to represent sub-grid roughness (section 4.4) and topographic change168

(section 4.5). Finally, a synthesis of these results with those of recent SfM-MVS validation studies169

is presented in section 5.170
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171

2. Study Area172

173

Eroding badlands provide an appropriate location validation of a topographic survey technique due174

to the complexity of their surfaces (e.g. slopes, aspect, dissection) and the variability of surface175

deformation rates (e.g. rill formation, head-cutting, deposition). A series of highly erodible badlands176

located at the Upper River Cinca (Central Pyrenees, Iberian Peninsula, Ebro Basin) were chosen177

for this study (Figure 1). The badlands are located at an average altitude of 600 m.a.s.l. and the178

local relief can be more than 15 m. The site has a Continental climate with an annual rainfall179

around 700 mm. Maximum rainfall is observed during spring and autumn. The average180

temperature is 11°C. Temperatures below freezing are often registered in winter when freeze-thaw181

is a fundamental process controlling the erosion and transfer of sediment.182

183

The selected badlands present steep slopes (near vertical in places) and a high degree of184

dissection. The presence of vegetation is limited: isolated shrubs are observed in gentle slopes185

while boxwoods and relatively young pines are present on low gradient upper surfaces (Figure 1C).186

The badlands are composed of highly erodible Eocene marls and sandstones. A sequence of187

marls with different degree of compactness is observed. Therefore, erosional processes are188

hypothesized to be highly complex and spatially variable. The study is focused in three embedded189

scales as can be seen in Figure 1: (i) plots (5 in total and between 8 and 30 m2) located within (ii) a190

small catchment (4710 m2) (Figure 1C) which in turn is located within (iii) a larger landscape-scale191

(~1 km2; Figure 1B).192

193

The study landscape is rapidly eroding relative to other hillslopes in the area; however, the194

magnitude of the topographic change observed is small in comparison with that reported in gravel195

bed rivers or in areas subjected to landslides, for which morphometric sediment budgets are196

typically calculated. Therefore, the relatively low magnitude of the surface change represents a197

deliberately challenging test for SfM-MVS.198
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199

3. Methods200

201

3.1. Field Data Collection202

203

Two field campaigns were undertaken with an 11 month survey interval. The first survey took place204

over the 27th and 28th June 2013. The second took place over the 27th and 28th May 2014. A205

summary of the main methods used at each scale of enquiry is provided in Table 1. Two main data206

sets were obtained: (a) a series of photographs to derive point clouds by means of SfM; and (b) a207

series of validation data sets based on Terrestrial Laser Scanning and Total Station (TS) surveys.208

Details of the methods applied to obtain the data are provided in the following sections.209

210

3.1.1. SfM-MVS image acquisition211

212

To quantify robustly the typical errors observed with SfM, a number of separate image sets were213

acquired from different platforms and at different altitudes (Table 1). A number of sources of error214

can be identified for SfM-MVS including the number of images used and their overlap, errors215

associated with processing (software and algorithms), imaging geometry, the characteristics of the216

camera used and the quality of the lens model. However, the focus herein is on the effect of survey217

range (i.e. altitude from where the pictures are taken); a fundamental issue for assessing the218

broader applicability of SfM in geomorphology since it determines indirectly the maximum219

capability of survey coverage and data resolution (i.e. closer-range images cover smaller areas for220

a given camera). The errors associated with range will determine the appropriate scales at which221

SfM can be deployed to investigate scale-dependent processes and, consequently, address222

geomorphological questions.223

224

In 2013 two sets of ~350 images were taken (Table 1) at the small-catchment scale (Figure 1C).225

The first was ground-based, utilising only oblique photographs taken from around the perimeter226
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and hillcrests of the badland. Ground-based surveys are referred to as ‘Oblique’ surveys in the227

results. A Panasonic DMC-TZ65 (focal length 4 mm which is a 35-mm equivalent of 25 mm; 10228

Mpx) was used in this campaign. The second sequence of pictures was taken aerially from a UAV;229

a remote controlled hexacopter DJI F550. In this case, a Ricoh CX5 (focal length 5 mm which is a230

35-mm equivalent of 28 mm; 10 Mpx) camera was suspended from underneath the UAV with a231

vertical viewing angle. These two cameras are very similar; the key difference was that the Ricoh232

camera had an intervolemeter. The mean flying height was 47 m above ground. The camera was233

set up to take a picture every 5 seconds (interval timer, auto shooting). This survey is referred to as234

the ‘UAV’ survey in the results.235

236

In 2014 a different set of images was obtained for each of the three study scales: plot, small-237

catchment and landscape. Five plots were imaged from the ground at around 5 m range (between238

25 and 33 oblique images taken by hand). The same Panasonic DMC-TZ65 was used for this239

image set. Four independent sets of images were obtained at the small catchment scale (Table 1).240

First, the oblique survey of 2013 was repeated taking imagery along exactly the same route and241

using the same camera as in 2013. In addition, three aerial surveys were conducted at different242

altitudes. Images were taken from on-board a piloted AutoGiro (or gyrocopter). Off-vertical images243

were taken to avoid the doming effect described in James and Robson (2014). Flight paths were a244

sequence of parallel flight strips (previously designed based on flight altitude and camera245

specifications) spaced ~70 m apart, with ~3 additional perpendicular strips added to maximise the246

coverage and overlap between pictures. Images in a flight strip were ~ 10 m apart. Target flying247

heights of 50 m, 150 m and 250 m were designed for the three surveys; however, owing to the248

topographic variability of the ground, each survey contained a range of viewing heights. Final mean249

flying heights were 70 m (SD = 16 m), 170 m (SD = 25 m) and 270 m (SD = 19 m) respectively.250

Finally, to obtain the images required for the landscape scale study, the two AutoGiro flights at 150251

m and 250 m above the ground were extended to cover an area of around 1 km x 1 km (Figure252

1B). The 50 m altitude AG survey resulted in 149 images of the small catchment while the 150 m253

and 250 m altitude AG surveys of the 1 km2 area resulted in 527 and 138 images respectively.254

With the camera operator taking images manually, a heavier camera could be used than from the255
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UAV; however, previous camera intercomparison experiments (Thoeni et al., 2014; Micheletti et256

al., 2014) show little difference between compact cameras and DSLRs. All images taken from the257

AutoGiro were obtained by means of a Nikon D310 SLR (focal length 55 mm which is a 35-mm258

equivalent of 25 mm; 14 Mpx). The improved image resolution of the Nikon was considered259

necessary to support the 250 m altitude surveys and locate GCPs. These surveys are referred to260

as ‘AutoGiro’ (AG) surveys in the results and the altitude of each is also stated to distinguish the261

data sets (e.g. AG 250 m).262

263

A primary control network based on 4 benchmarks was established. Coordinates were obtained by264

means of a Leica Viva GS15 GNSS base station and post-processed using Rinex data from 5265

stations of the Spanish National Geographic Institute (IGN) and the Spatial Data Infrastructure of266

Aragon (SITAR). The data quality of the coordinates of the benchmarks (3d quality) was, on267

average, 0.006 m, with a standard deviation of 0.0017 m. This primary network was used to268

register all surveys conducted in 2013 and 2014 to the same coordinate system.269

270

Three different secondary networks of Ground Control Points (GCPs) were set up in relation to the271

scale of the study. Five 200 x 200 mm red targets with a central 50-mm diameter disk-mark were272

used for the plot scale and surveyed by means of a Total Station (TS). For the small-catchment273

scale, in both 2013 and 2014, a network of 30 GCPs was surveyed with a Leica Viva GS15 RTK-274

GPS. In this case, black 1 m x 1 m targets with a yellow cross were laid in a grid over the full275

catchment, similar to those used by Vericat et al. (2009) and Westoby et al. (2012). A local GPS276

base was set up at one of the benchmarks transmitting corrections to the RTK-Rover system.277

Small catchment GCPs were surveyed with 3d qualities between 0.009 and 0.014 m. Finally, at the278

landscape scale, the 200 x 200 mm red targets were used. The size and colour of the targets were279

chosen based on an experiment to determine the minimum target size that could be resolved using280

the Nikon D3100 camera from 250 m above the ground. A total of 80 GCPs were placed281

throughout the 1 km2 badland area and surveyed with a Leica Viva GS15 RTK-GPS (3d qualities <282

0.05 m).283

284
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3.1.2. Validation Datasets285

286

Validation datasets were based on TLS and TS topographic surveys. A Leica ScanStation C10287

TLS was used to provide high resolution topographic data across the field site in both 2013 and288

2014. The C10 uses a 532-nm pulsed laser with stated precisions of 6 mm for position, 4 mm for289

distance, and 60 ȝrad for angles (one standard deviation; Leica Geosystems, 2011). The 290

maximum data acquisition rate is 50000 points per second while the maximum survey range is 300291

m. Although the reported minimum point spacing is < 1 mm, the laser point spread function is 4292

mm over a range of up to 50 m. The small catchment area was surveyed from 12 different stations293

to minimise and eliminate gaps caused by occlusion. For consistency, survey markers were placed294

at each station to ensure that the same locations were used for the TLS surveys in each year.295

Plots were also surveyed and were positioned close to TLS stations. A target-based registration296

was performed using a floating network of tripod-mounted Leica targets (i.e. 6" circular tilt and turn297

blue/white targets). This floating network was registered using the primary control network298

described above. The coordinates of the targets were obtained by means of a reflectorless Leica299

TPS1200 Total Station. All TS surveys were performed by averaging 10 consecutive300

measurements with standard deviations always < 0.004 mm. The mean absolute scan registration301

errors were 3 mm and 2 mm in 2013 and 2014 respectively. All topographic data were302

georeferenced to a geographic coordinate system (ED50 UTM31N) using the primary control303

network.304

305

The 2014 TLS dataset is used to validate SfM-MVS surveys, conducted concurrently. In addition,306

as an independent dataset to provide an additional validation, 515 points within the small307

catchment and 215 across the landscape-scale area were also surveyed with the reflectorless TS.308

Errors on the TS surveys were in the sub-centimetre range.309

310

3.1.3. Validation metrics311

312
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Differences between SfM-derived topographic data and the validation datasets were investigated313

using the following metrics: (i) mean error (ME); (ii) mean absolute error (MAE); (iii) root mean314

squared error (RMSE); and (iv) standard deviation of error (SD).315

316

3.2. Post-Processing317

318

3.2.1. Obtaining SfM and TLS-based point clouds319

320

Photographs were inspected manually and any blurred images were deleted. The remaining321

photographs were imported into Agisoft Photoscan Professional 1.0.4. This software package322

identifies keypoints using an algorithm based on the Scale Invariant Feature Transform (SIFT)323

object recognition system outlined in Lowe (2004). Once the SfM process was complete, estimated324

camera positions were inspected for misalignment and any misaligned images were removed.325

Such images typically resulted from insufficient overlap with other photographs, from objects that326

were not static during the image acquisition (e.g. vegetation, moving shadows), or from327

approximations in the keypoint matching process. GCPs were then identified in the image set and328

their GPS coordinates were imported. A linear similarity transformation was performed to scale and329

georeference the point clouds and the transformation was then optimised; a process where camera330

parameters and 3D points are adjusted to minimize the sum of the reprojection error and the331

georeferencing error (Agisoft, 2012; Javernick et al., 2014). A MVS dense reconstruction was then332

performed to produce the final SfM-MVS point clouds.333

334

TLS point clouds obtained from the 12 stations were registered using Leica Cyclone 8.0. Both TLS335

and SfM point clouds were cropped to include only the area of interest. Specifically, at the plot336

scale, surveyed areas were limited to mostly bare soil, but any small shrubs were removed337

manually. At the small catchment scale, large trees and shrubs were also removed from the point338

clouds manually. In addition, a mosaicked orthophoto of the small catchment was derived from the339

AutoGiro flight at 50 m altitude. This orthophoto was extracted by means of Agisoft Photoscan340

Professional 1.0.4 after scaling and georeferencing. From this orthophoto (Figure 1C), polygons341
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were defined manually to mask out areas of vegetation which were excluded from analysis. At the342

landscape scale, no such data cleaning took place as the TS validation was limited to bare areas343

and, consequently, was unaffected by vegetation.344

345

3.2.2. Extracting ground surface and sub-grid topographic statistics346

347

The open-source topographic point cloud analysis toolkit (ToPCAT) was used to unify point348

densities, extract ground-elevations and, consequently create DEMs from georeferenced 3d point349

clouds. Brasington et al. (2012) and Rychkov et al. (2012) give a full description of this intelligent350

decimation method and provide several examples of its application. While developed originally for351

use with TLS data, it has been used with SfM-MVS datasets previously (Javernick et al., 2014;352

Smith et al., 2014). ToPCAT was run to extract sub-grid topographic statistics at a 0.1 x 0.1 m353

resolution in case of the plot and small catchment scales. Several statistics (mean elevation,354

minimum elevation, maximum elevation, etc.) of the point clouds were obtained within each 0.1 x355

0.1 m grid cell. Owing to the large area under investigation, the landscape-scale point clouds were356

post-processed at 1 x 1 m resolution. In each case, the mean elevation of each grid cell was used357

to generate a DEM.358

359

Additional sub-grid scale statistics were also calculated using ToPCAT. For each cell, a360

neighbourhood triangular tessellation based on mean elevation in each cell was used to construct361

the local surface and detrend all points within the central grid cell (see Brasington et al., 2012). The362

detrended standard deviation of elevations ıd was then calculated in each cell. Given the363

proliferation of use of ıd as a roughness metric across the Earth Sciences (Smith, 2014), ıd is an364

appropriate choice of roughness metric for this study.365

366

3.2.3. Comparing DEMs and assessing a minimum Level of Detection (minLoD)367

368

DEMs of the small-catchment were compared to investigate erosion and sedimentation patterns,369

and assess the net topographic change during the 11 months between surveys (as a proxy of the370
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sediment yield). Three independent estimates were calculated: (i) differencing TLS-based 2013371

and 2014 DEMs; (ii) differencing oblique, ground-based SfM DEMs from 2013 and 2014; and (iii)372

differencing SfM-based DEMs from the lowest aerial surveys (50 m flying altitude, see Table 1). To373

calculate topographic changes between the two survey periods the old DEM was subtracted from374

the new DEM to create a DEM of Difference (DoD) where negative values indicate a lowering of375

topography (erosion) and positive values represent sedimentation. The significance of these376

changes will be controlled by the errors and topographic uncertainties in each DEM. In the case of377

this study, following the approach described by Brasington et al. (2000), a threshold minimum level378

of detection was applied to distinguish between real topographic change and artefacts arising from379

errors/uncertainties in the two DEMs (see also the more recent studies of Brasington et al., 2003;380

Wheaton et al., 2010; Vericat et al., 2014). The minimum level of detection for real topographic381

change (i.e. minLoD), was calculated as:382

383 ܦܮ݊݅݉ = ாெଵଶߝ]ݐ + ாெଶଶߝ ].ହ
384

where t is the critical t value for a given confidence interval and İDEMi the errors associated to the385

new (i = 1) and old (i = 2) DEMs. Using the 90% confidence interval, t = 1.65. For each DEM the386

sub-grid roughness value ıd was applied to represent İDEMi as the sub-grid topographic variability387

in the point cloud may be the largest source of uncertainty in the ground estimate. This technique388

yields a spatially distributed threshold minimum level of detection based upon local topographic389

roughness where small changes can be resolved more reliably on smooth surfaces than rough390

surfaces. Observed changes below the minLoD were filtered out of each DoD and considered391

unreliable.392

393

4. Results394

395

Results are divided into 5 sections: section 4.1 outlines the errors involved in registering and396

georeferencing TLS and SfM-based datasets. Validation of both 2014 TLS and SfM-derived397
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topographic models (DEMs) with point-based measurements acquired through a TS survey is398

presented in section 4.2. The TS point measurements are considered to represent the true ground399

elevation. The validation is performed for the 2014 datasets over the three study scales to assess400

the role of survey range on survey quality. In section 4.3, TLS and SfM-based DEMs obtained in401

2014 are compared at plot and small-catchment scales. In this case the TLS model is considered402

to represent the true ground surface estimate. The sub-grid scale topographic variability (i.e.403

roughness) of TLS and each SfM-based point cloud obtained for the 2014 datasets at the plot and404

small-catchment scales are compared in section 4.4. Finally, a demonstration of the change405

detection capabilities of TLS and SfM at the small-catchment scale is presented in section 4.5406

through differencing of the DEMs obtained in each year.407

408

4.1. Registration and georeferencing of point clouds409

410

In both 2013 and 2014, a total of 12 TLS scans were merged to create the full topographic model411

at the small catchment scale using a target-based registration as explained above. Average412

registration errors were 3 mm (2013) and 2 mm (2014) (Table 2). The georeferencing error of the413

targets was < 2.2 mm. Both TLS point clouds contained over 300 Mn points resulting in an average414

point density of >6.7 points per cm2.415

416

SfM surveys at the small-catchment scale typically employed around 20 GCPs. Reported 3d errors417

range from 0.06 m to 0.21 m. The relatively high errors reported in the oblique (i.e. ground-based)418

2014 survey reflect poor matches in the upper catchment, which was excluded from analysis owing419

to a low point density and presence of unreliable mismatched imagery. Excluding GCPs from the420

upper catchment reduces this error to 0.109 m. Relatively high georeferencing errors were also421

reported in the higher altitude AutoGiro (AG) surveys; however, for these surveys additional targets422

distributed over the 1 km2 landscape-scale were used for georeferencing. Using only GCPs over423

the catchment-scale reduces this 3d error. At the plot scale, much lower 3d errors were reported.424

In this case 5 targets were used to georeference each plot survey with one target in each vertex of425
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the plot and one extra GCP for redundancy. Such a perimeter-distribution was one of the optimal426

distributions observed by Vericat et al. (2009) when georeferencing aerial imagery.427

428

The ability to georeference such surveys accurately is a fundamental aspect of an examination of429

SfM to produce reliable change detection estimates; however, it has the potential to affect greatly430

the comparison of topographic models in section 4.5 (see Micheletti et al., 2014). As such,431

topographic data products were produced for each survey to check for any systematic432

misalignment against the TLS datasets that would dominate results. Aspect and flow accumulation433

rasters were compared and no systematic georeferencing problems were observed (with a 0.1 m434

grid size).435

436

4.2. SfM and TLS validation based on Total Station Surveys437

438

External validation of both TLS and SfM-based surveys obtained in 2014 is provided by 515 TS439

survey points within the small-catchment, and an additional 215 points distributed over the440

landscape scale area. The plot scale SfM surveys (gridded at 0.1 x 0.1 m) were validated against441

TS point-based surveys (Table 3). No TS validation points were located within Plot 5. Plot-scale442

MAE values were in some cases an order of magnitude lower than those observed for the results443

from the aerial surveys (i.e. AG) and in all but one case, lower than the reported errors for the TLS444

survey (Table 2). This close fit is also reflected in the RMSE values (see Table 3; Figure 3A).445

446

The distributions of errors for each small-catchment scale survey are displayed in Figure 2 and the447

errors for all surveys at each scale are summarised in Table 3 and Figure 3A. At the small448

catchment scale, the MAE between the gridded TLS DEM and the TS survey points was 0.03 m. In449

comparison, the reported MAE for the SfM surveys increased with survey altitude ranging from450

0.07 m (AG50 m) to 0.18 m (AG250 m). The oblique survey demonstrated a higher MAE than the451

lowest aerial survey with a large number of points surveyed as being considerably lower than the452

validation dataset (Figure3A). From visual inspection of the oblique SfM DEM, a patch where453



17

images were matched incorrectly can be observed (also seen in Figure 4A). Other error metrics454

follow a similar pattern (Table 3).455

456

Finally, the 1 m resolution AG150 m and AG250 m landscape-scale DEMs were validated against457

all 730 TS survey observations. Errors are increased substantially; while this increase may reflect458

greater unreliability of the SfM surveys outside of the small catchment, it also reflects the greater459

grid size used to produce the DEM. This issue is discussed further in section 5, and highlights the460

need for a robust validation of SfM surveys against co-incident TLS-derived point clouds.461

462

4.3. SfM validation based on TLS Digital Elevation Models463

464

Differences between each SfM-based DEM and the DEMs produced from the TLS datasets are465

summarised in Table 4 and Figure 3b. Differences between SfM and TLS-based DEMs (i.e.466

DoDSfM-TLS) at the plot scale were very small, with generally sub-centimetre MAE. RMSE values467

between the cells of the plot scale data are all <0.02 m. These values are an order of magnitude468

lower than those found at the small catchment-scale (Table 4). Again, the lowest altitude (~50 m)469

SfM aerial survey showed the lowest errors when compared against the concurrent TLS data (MAE470

= 0.055 m; RMSE = 0.080 m). All error metrics increased with the altitude at which pictures were471

taken. Finally, the oblique ground-based SfM survey exhibited intermediate error metrics (Table 4).472

Notably, the UAV survey in 2013 exhibits much greater errors (MAE = 0.218 m, RMSE = 0.308 m)473

than the 50 m survey which was at a similar height and indicates a clear systematic error with this474

SfM model (Figure 4E).475

476

In common with the TS validation (section 4.2), the distribution of errors for the Oblique SfM survey477

(Figure 5a) reveals a large area where the SfM DEM was lower than the TLS DEM in the stretching478

of positive errors. Examination of the spatial pattern of these differences (Figure 4A) identifies479

several areas of strong positive errors (i.e. SfM DEM is lower than the TLS DEM) mostly in the480

upper part of the catchment, but also with clear patches in the centre of the study area. The lowest481

altitude SfM aerial survey also underestimates terrain height over most of the catchment (Figure482
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4B), but this difference is relatively minor (see histogram). The survey overestimates the height of483

some thalwegs in the catchment, suggesting that the model is least reliable here.484

485

The models obtained with pictures taken from the AutoGiro at 150 m and 250 m altitude486

overestimate the terrain height across much of the study area (Figure 4C−D; Table 4). Examination 487

of the spatial distribution of errors (Figure 4C−D) highlights clearly a strong spatial pattern that 488

appears related to the topographic variability, particularly in the lower parts of the study catchment.489

A profile taken over this area of pronounced topographic variability (i.e. high local relief) clarifies490

the nature of these errors (Figure 5).491

492

While at first, the patterns in Figure 4D appear to resemble georeferencing errors in a zone of493

steeply sloping terrain, Figure 5 demonstrates that the models are well aligned. The AG50 m DEM494

corresponds closely with the TLS survey, as is also the case for the oblique survey, though clear495

areas of underestimated terrain height can be seen in the latter (e.g. at around 4 m on the profile).496

The higher SfM-based data are not able to represent fully the range of elevations, underestimating497

ridge elevations and overestimating thalweg elevations (despite an estimated pixel size of the498

images at around 0.025 m at the highest flying altitude). The increased variability in mean elevation499

in each grid cell with flying height is also pronounced (e.g. at 15 m in Figure 5). Such a loss of500

precision is investigated in section 4.4.501

502

4.4. Differences in sub-grid topographic variability503

504

An increasing number of studies are utilising the sub-grid variability of topography, or roughness, to505

infer process or as error terms in the case of change detection (as demonstrated in section 4.5).506

Thus, it is instructive to compare the topographic variability within each grid cell, specifically the507

detrended standard deviation taken as a metric of roughness. Increased sub-grid topographic508

variability will reflect either real surface roughness or the survey precision; the two components are509

combined in a sub-grid roughness metric (on a flat surface, sub-grid roughness would reflect510

instrument precision alone). The assumption here is that where real surface roughness has been511
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captured by the higher precision instrument (i.e. the TLS) higher roughness values obtained with512

different survey methods broadly (though not directly) indicate survey precision. The distribution of513

roughness values in each survey is summarised in Table 5 along with summary statistics of cell-514

by-cell differences between TLS and SfM-based surveys at the plot and small-catchment scales.515

The spatial and statistical distributions of small catchment scale roughness values is displayed in516

Figure 6A-D and Figure 6E-H while cell-by-cell differences between each SfM-based survey and517

the TLS survey are presented in Figure 6I-K.518

519

At the plot scale, sub-grid roughness in the TLS and SfM surveys are comparable. SfM surveys520

more frequently exhibit smaller roughness values overall which may indicate higher precision of the521

data set (or may alternatively reflect smoothing as part of the MVS algorithm). Indeed, the522

distribution of plot-scale TLS roughness contains a small number of cells with high roughness523

values which are not observed with SfM and could indicate the presence of ‘mixed pixels’.524

525

At the small-catchment scale, both the mean and standard deviation of sub-grid roughness in TLS526

2014 and AG50 m surveys are comparable and only marginally higher in the oblique SfM survey.527

Figure 6 demonstrates that the distributions of these values are similar. The spatial patterns of528

roughness in Figure 6A-D indicates that the TLS and AG50 m SfM surveys are picking out similar529

patterns, while the oblique survey exhibits additional patches of high roughness values. These high530

roughness patches are broadly co-incident with the areas of mean elevation understimation (Figure531

4A) in the oblique survey, and are a consequence of mismatched imagery creating two surfaces at532

the same location at different elevations, increasing the range of elevations (and thus the sub-grid533

roughness) while lowering the mean elevation value used to derive the DEM. Despite being534

acquired from a similar survey range to the AG50m data, the 2013 UAV data is much rougher than535

the concurrent TLS data.536

537

Figure 6D shows that the distribution of sub-grid roughness is clearly different for the higher538

altitude SfM aerial surveys with much higher values reported (Table 5). It should be noted that only539

grid cells with >3 survey points were included in the roughness analysis. This criterion limited the540
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number of cells included from the AG150 m and AG250 m surveys. Nervertheless, it is clear from541

Figure 6D that the populated roughness values are much higher than observed by the TLS and so542

are likely to be dominated by a reduction in precision of the SfM point cloud even at 150 m altitude,543

particularly in the topographic lows, as seen in Figure 5. With only 102 sufficiently populated cells544

for roughness analysis, the distributions of roughness for the AG250 m SfM survey are not545

presented in Figure 5.546

547

Cell-by-cell comparisons (Figure 6I-K) show considerable scatter at lower roughness values for548

both TLS and SfM-based surveys, suggesting that no agreement exists between the TLS and SfM549

data sets. The lack of agreement may reflect the uncertainty of the data sets which is relevant at550

such small sub-grid scales. Where higher sub-grid roughness is observed (~0.2 m) agreement can551

be seen, though this breaks down with increasing altitude.552

553

4.5. Topographic change detection554

555

The ability of SfM-MVS surveys to detect topographic change is compared against TLS-based556

results (i.e. DoDTLS2014-TLS2013). While relatively large in comparison with other hillslope areas, the557

typical topographic changes observed over 11 months in a rapidly eroding badland are moderate in558

comparison with more dynamic higher-energy systems (e.g. gravel-bed rivers) to which this559

morphometric method is more often applied (e.g. Wheaton et al., 2013).560

561

For TLS data, the number of cells above the minLoD is relatively low indicating that most562

topographic changes between surveys are in the range of the uncertainty of the surveys. The final563

DoDs created from the TLS data demonstrate relatively small areas of detectable topographic564

change focused in the thalwegs and flow lines of the small catchment (Figure 7A). This extensive565

TLS-derived morphometric sediment budget covers an area over 100 times larger than that566

presented previously by Vericat et al. (2014). Volumetrically, erosion was twice than deposition,567

with a catchment average topographic change of -1.44 mm a-1 (Table 6). As expected, much of this568
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change is dominated by relatively small topographic differences between the two models,569

particularly in areas of deposition, which tend to be less pronounced but more widespread.570

571

The magnitude of the measured topographic change increases when SfM-based surveys are used572

to estimate the morphometric sediment budget. While the overall catchment average topographic573

change calculated from ground-based SfM might at first appear to be reasonably accurate (-2.19574

mm a-1, Table 6), examination of the volumes of estimated erosion and deposition reveals that both575

figures are largely overestimating the real changes, resulting from insufficient accuracy. Similar576

overestimates are evident for the aerial surveys, which is to be expected given errors reported in577

the earlier topographic validation.578

579

There is little relation between the TLS-derived DoD and the SfM-derived DoDs with considerable580

reconstruction error observable throughout the study area. Clear patterns of systematic error can581

be seen through the catchment. Quantitative comparison of the DoD derived from oblique ground582

based imagery (Figure 7B) with the DoD derived from TLS surveys reveals a ME of -38.97 mm, a583

MAE of 158.28 mm, an RMSE of 301.93 mm and a SDE of 299.41 mm. In comparison, the DoD584

derived from the aerial image at 50 m above the ground (Figure 7C) demonstrated much lower585

error metrics of ME = 2.51 mm, MAE = 134.54 mm, RMSE = 194.35 mm and SDE = 192.72 mm.586

Comparison of Figures 7C and 4E identified the 2013 UAV survey as the source of this error. For587

both datasets, these errors are too large to resolve annual topographic changes associated with588

badlands at this scale, though two datasets of the same quality as the AG50m imagery would589

enhance the ability of aerial imagery to resolve changes of <0.1 m.590

591

5. Discussion592

593

As a survey method, SfM-MVS can be implemented easily across a particularly wide range of594

scales (see Figure 8). This capability offers the potential for relatively standardised measurements595

of topography over a range of spatial and temporal scales. The validation study presented herein,596
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aimed to clarify typical errors expected from SfM-MVS surveys, by conducting multiple nested597

surveys of the same area at a number of scales and over a number of platforms. Repeat TLS598

surveys covering a catchment of over 4000 m2 and the derived spatially-distributed morphometric599

sediment budget offered an ideal and unique data product with which to validate both plot scale600

and small catchment SfM surveys. This was supplemented further with total station surveys for601

independent validation.602

603

5.1. Quality of SfM-based topographic surveys: scale dependence604

605

606

At the plot scale (here ~10 m2), sub-centimetre mean absolute differences between SfM-MVS607

DEMs and TLS-derived DEMs are observed. In some cases, the detectable differences are608

sufficiently small that there is no reason to necessarily prefer the TLS survey as the reference609

dataset owing to: (i) the increased point density of the SfM-MVS point clouds over these plots; (ii)610

the generally lower sub-grid roughness (i.e. inferred higher precision) of SfM-MVS data sets and;611

(iii) the greater range of perspectives offered by SfM-MVS (causing fewer shadows). This finding is612

line with that of James and Robson (2012) who observed sub-millimetre errors when surveying a613

hand sample from an even shorter range. Given the high resolution of topographic data achievable614

at the plot scale with individual clasts being clearly observable, SfM-MVS is well capable of615

detecting topographic changes and, sediment budgets, at the plot or even slope scale, and is likely616

to be an improvement on many existing methods. Errors are well within those of the TLS sediment617

budget presented in Figure 7A. The visual nature of the method even indicates that the movement618

of individual clasts could be tracked in three-dimensions, permitting new inferences in the study of619

sediment transport connectivity (e.g. virtual travel velocity). Tuffen et al. (2013) applied such an620

approach to estimate the velocity of lava flows. Further work is required to demonstrate this621

convincingly.622

623

Scaling up SfM-MVS using oblique ground-based imagery to small catchment scales (~0.5 ha in624

this example) becomes problematic, especially in a complex, heavily dissected environment as625
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surveyed here. In some areas, the closer range yielded a dense point cloud and a close fit to the626

TLS-reference dataset (see profiles in Figure 5); however, the keypoint matching and camera pose627

estimation proved unreliable in parts of the survey area. While image pose estimation was628

examined visually before implementing the dense cloud reconstruction process, relatively small629

mismatches proved undetectable. Moreover, many images were rejected by the software and were630

not included in the reconstruction, resulting in a large part of the upper catchment where more631

vegetation is present (see Figure 1C) being excluded from oblique surveys. Matching ground-632

based imagery over relatively large scales is a demanding task for SfM software. Yet, mismatched633

patches are particularly problematic as these issues are not apparent during the field survey, and634

only arise during post-processing. The results herein suggest that, beyond plot sizes of ~ 100 m2,635

there is a preference for aerial imagery for SfM-based point cloud generation.636

637

Aside from large volumetric changes as seen with gully network expansion (e.g. d’Oleire-Oltmanns638

et al., 2012; Frankl et al., 2015), results herein suggest that SfM-MVS is only suitable as a method639

of monitoring soil erosion from ranges of < 50 m and possibly < 10 m. This would restrict640

applications to relatively small areas (<1 ha) as has been demonstrated by Eltner et al. (2014). Yet,641

errors observed even at the landscape scale are likely to be similar if not smaller than existing642

morphometrically-derived sediment yield estimates covering the largest areas which were643

estimated using DEMs created from historical aerial imagery (Ciccacci et al., 2008). Using an644

AutoGiro (or gyrocopter) as an aerial platform has advantages over UAV platforms allowing645

coverage over larger areas in a single survey, with longer flight times and the flexibility and stability646

that comes with hand-held shooting (permitting slightly oblique convergent photography).647

Comparison of the UAV and AutoGiro data acquired at the same altitude demonstrates this clearly,648

as UAV data exhibit a MAE four-times greater than the AutoGiro study. This result provides the first649

empirical confirmation of the modelling findings of James and Robson (2014) that off-vertical650

imagery in convergent pairs (taken for the AutoGiro survey) coupled with distributed ground control651

can reduce doming effects arising from vertical image sets (taken for the UAV survey) and652

inaccurate camera models. Further quality improvements can be made as camera technology653
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develops; for example, full-frame FX sensors are now available for DSLRs which provide finer654

detail and capture larger image areas.655

656

As reported in Vericat et al. (2014) in the case of sub-humid badlands, morphometric sediment657

budgets also require differentiation between topographic changes caused by erosion/deposition658

and surface shrinking/swelling which requires additional datasets (e.g. deep-anchored ground659

control points combined with trail cameras). Also, the masking out of observed changes that are660

below the minimum level of detection (and deemed unreliable) can potentially underestimate661

topographic change. However, as such changes are, by definition, minimal, this effect would not662

introduce a large bias in estimated sediment yield.663

664

The potential cost and time savings achievable using SfM-MVS in place of other high-resolution665

survey methods (e.g. TLS or airborne LiDAR) are noteworthy (see Castillo et al., 2012). There was666

little difference in survey time required for each camera platform (all ~ 10-15 minutes) and while667

UAV purchase costs are the greatest expense (~<£1,000) this was balanced by the cost of the668

gyrocopter hire (~£150). Greater errors from larger survey ranges are likely to be acceptable for669

other applications (e.g. terrain analysis) or for monitoring change on more dynamic systems (e.g.670

gravel bed rivers). From 50 m survey range, changes of ~ 0.1 m will be detectable. Surface models671

derived from 150 m elevation imagery (e.g. the TIN of Figure 1B) are certainly comparable to those672

derived from airborne LiDAR. For the first time, this study has shown that the spatial distribution of673

sub-grid roughness can be reproduced with SfM from 50 m survey range meaning that the survey674

precision is similar to that of TLS, although systematic errors may be present in the data. Further675

developments using camera phones and freely available online processing software (e.g. 123D676

Catch) (Micheletti et al., 2014) increase the accessibility of SfM-MVS as a survey method and677

indicate serious potential for widespread utilisation of the technique in the Geosciences and678

beyond.679

680

The TLS-derived morphometric sediment budget displayed in Figure 7A covers a much larger area681

than previous data sets presented in eroding badlands. Such a dataset is extremely valuable for682
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the development of improved understandings of sediment connectivity (see Bracken et al., 2014).683

Further work is required to understand the topographic and meteorological controls on this erosion.684

Embedded event-scale repeat SfM surveys at the plot or slope scale can add value to such annual685

sediment budgets owing to the reduction in survey time and resources required to undertake such686

work regularly. In this manner, SfM can add value to longer-term morphometric monitoring with687

more conventional means.688

689

5.2. Synthesis of SfM-validation: key findings and issues690

691

This study contributes to the emerging body of literature that aims to validate SfM robustly in that it692

has increased substantially the amount of available validation data points to date. Multiple SfM693

surveys from a range of survey heights and over a wide range of scales are validated with both694

point-based total-station data and through a comparison of SfM and TLS DEMs (gridded data). In695

each case the same software was used; however, a range of alternative SfM programs are696

available and used in existing literature (e.g. Mic Mac, Visual SfM). Combining the findings of this697

study with other reported validation studies yields important insights into the overall accuracy698

achievable with SfM-MVS. While several studies report mean error (e.g. Fonstad et al., 2013;699

Woodget et al., 2014), RMSE is commonly cited as a metric of surface quality, while MAE provides700

an indication of non-directional elevation errors and provides a natural and comparable measure of701

model performance (Willmott and Matsuura, 2005). In total, 50 SfM validation points have been702

compiled.703

704

Figure 9 plots both RMSE and MAE against survey range both for data sets presented in this705

paper and existing studies that report each validation metric. Data points are broadly separated706

into: (i) those that compare SfM-derived rasters (i.e. DEMs) with point topographic data (e.g. from707

RTK-dGPS or Total Stations) (‘point-to-raster’); (ii) those that compare SfM-DEMs with equivalent708

raster-based data products derived from another survey technique such as TLS (‘raster to raster’);709

and (iii) those that compare two point clouds directly (‘point to point’). As might be expected, RMSE710

at a given range decreases from (i) to (iii) (Figure 9A). Comparison of points with rasters is also711
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dependent on raster grid size; this effect can be seen directly in Figure 3A as the error metrics for712

the AG150 m and AG250 m surveys increased between the small-catchment (0.1 x 0.1 m DEM)713

and landscape scales (1 x 1 m DEM) which were derived from the same point cloud. Direct714

comparison of two DEMs or two point clouds seem to be the fairest tests of SfM as comparable715

data-products are being evaluated. However, applications of SfM data typically derive DEMs as a716

final processing step, thus it could be argued that a raster-based comparison is most717

representative of real errors in final data products.718

719

A linear degradation in precision with survey range is expected theoretically, is well established for720

traditional stereo photogrammetry and has been observed previously for SfM (James and Robson,721

2012). However, the majority of existing validation studies report RMSE and not SD.722

With a greater synthesis of data points, over a wide-range of terrain types, a power-law relating723

RMSE and survey range provides the best fit to the data between survey ranges of <1 m and 1000724

m (Figure 9A). The exponent of this relationship is 0.88 which is close to linear (R2 = 0.80, n = 43).725

Combining all SfM validation points, a median ratio of RMSE : survey range of 1:639 is observed,726

which is very similar to the ratio of 1:625 reported by Micheletti et al. (2014). Since RMSE reflects727

overall model accuracy and not precision, the ratio is well below the 1:1000 ratio between precision728

and range reported by James and Robson (2012). RMSE reflects more than the expected linear729

degradation in precision; although a linear relationship between RMSE and survey range might be730

also expected, the summary in Figure 9A reflects a number of factors that seem to limit the731

practically-achievable accuracy of SfM. Camera platform, camera sensor, weather, georeferencing732

method, validation method, number of images and their geometry, distribution of GCPs, terrain733

type and processing software will all influence the final model quality to some extent and may be734

responsible for the observed non-linear trend. Certainly, survey range is not the only variable to be735

altered between the points in Figure 9A which compiles results from a wide range of studies. While736

Figure 9A gives a useful indication of the relationship between RMSE and survey range, there is a737

clear need for a systematic validation of SfM to determine the effect of each of these factors on738

data quality.739

740
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MAE is reported less frequently; Figure 9B compiles 28 reported values. Again, raster-based741

comparisons yield a lower error metric at a given range. Again a power law best fits the data (R2 =742

0.69) with a lower exponent of 0.57. Using just the raster-based validation data (n = 8) increases743

the exponent to 0.78 and improves fit substantially (R2 = 0.97) (dashed line in Figure 9B).744

745

From Figure 9A and considering both the RMSE : range ratio of 1:639 and degree of scatter746

around the trend line, at 10 m range, around 10−15 mm errors can be achieved which would be 747

suitable for the majority of applications. Inspection poles provide ideal viewing angles at that range748

and could replace the need for UAVs over the small catchment scale presented here. Such749

inspection poles allow remote triggering of elevated cameras and achieve a compromise between750

the close-range imagery available from oblique ground-based surveys, and the more reliable751

surfaces generated from airborne surveys. Over larger areas (i.e. the landscape-scale surveys752

presented here) a larger range is required (>100 m) for a manageable survey; this increases753

anticipated errors by an order of magnitude. Thus, synthesis of extant literature suggests that, for754

soil erosion applications, SfM should only be applied where survey ranges ~ 10 m can be755

achieved.756

757

6. Summary and Conclusions758

759

Structure-from-Motion with Multi-View Stereo can be used to generate high resolution topographic760

data products at a wide range of scales. For the first time, this study presents a robust validation of761

SfM using multi-scale nested surveys and a distributed morphometric sediment budget over an762

area >4000 m2 derived using TLS. Validation reveals that data sets of a sufficient quality for soil763

erosion monitoring and comparable with TLS can be obtained at the plot or hillslope scale. With a764

0.1 x 0.1 m grid size, sub-grid roughness parameters similar to those from TLS can be derived765

even from ranges of ~ 70 m. However, the suitability of using SfM for topographic change detection766

at this scale is limited to rapidly changing landforms and environments (e.g. gravel bed rivers). For767

larger areas of more complex topography, aerial images from piloted gyrocopters are preferable for768
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reliable image matching, but with increasing survey height, surface precision decreases. Sub-769

centimetre errors are achievable at ~10 m range as might be provided by a camera inspection770

pole. Errors increase approximately linearly with survey range and ratios of RMSE : survey range771

of 1:639 are observed. Despite these errors, landscape-scale DEMs can be derived rapidly and at772

minimal expense and are likely to have a considerable impact of the future trajectory of773

geomorphology as a discipline.774
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List of Figures1043

1044

Figure 1. (A) Location of study site in the Upper River Cinca (Central Pyrenees, Iberian Peninsula,1045

Ebro Basin); (B) topographic model of the landscape-scale (1 km2) study area derived from SfM;1046

(C) orthophoto of the small-catchment (4710 m2) which is the main focus of this paper. Plot1047

outlines (< 30 m2) and the location of the profile AA’ in Figure 5 are shown in (C).1048

1049

1050

Figure 2. Distribution of errors in the total station validation of SfM-MVS surveys (A−D) and the 1051

TLS 2014 survey (E) at the small catchment scale. Dashed lines indicate ±0.1 m.1052

1053
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1054

Figure 3. Summary of errors in topographic validation at three different scales using (A) total1055

station data; and (B) using TLS data.1056

1057

1058

Figure 4. Distribution of errors in the TLS validation of SfM-MVS surveys and the spatial pattern of1059

the errors across the small catchment (TLS survey – SfM surveys). Dashed lines indicate ±0.1 m.1060
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1061

1062

Figure 5. Profiles comparing the TLS DEM with each small catchment-scale SfM DEM. For the1063

location of the cross-section, see Figure 1C.1064

1065

1066

Figure 6. Spatial (A-D) and statistical (E-H) distributions of sub-grid roughness for the TLS (2014)1067

survey (A, E); oblique ground-based SfM survey (B, F); the 50 m altitude aerial SfM survey (C, G);1068
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and the 150 m altitude aerial SfM survey (D, H). Note: the x-axis range of the distribution of (H) has1069

been limited to aid comparison. Cell-by-cell comparison between SfM-derived sub-grid roughness1070

and TLS data (I-K).1071

1072

1073

Figure 7. DEMs of Difference (DoDs) at the small catchment scale alongside a summary1074

distribution of estimated volumetric changes associated with different degrees of topographic1075

change for (a) TLS data; (b) oblique ground-based SfM surveys (showing only absolute changes1076

<1 m); (c) aerial SfM surveys (AG50 and the UAV data in 2013).1077

1078

1079

Figure 8. SfM-derived photorendered point clouds of the study badlands over a variety of scales1080

(left to right): from plot (~0.0001 ha) to slope (~0.01 ha), to small catchment (~1 ha) to landscape1081

(~100 ha).1082
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1083

1084

Figure 9. Synthesis of existing SfM validation studies (navy) with data points generated in this1085

study (maroon) examining the effect of survey range against (A) RMSE and (B) MAE. Dashed line1086

in (B) summarises only raster-based validation data. Data extracted from: Favalli et al. (2012),1087

Harwin and Lucieer (2012), James and Robson (2012), Mancini et al. (2013), James and Quinton1088

(2014), Javernick et al. (2014), Lucieer et al. (2014), Micheletti et al. (2014), Ouédraogo et al.1089

(2014), Ruzic et al. (2014), Smith et al. (2014), Thoeni et al. (2014), Tonkin et al. (2014), Stumpf et1090

al. (2015), subaerial data from Woodget et al. (2014) and an unpublished result by the authors on1091

ice surface plots.1092

1093
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Tables1094

1095

Table 1. Overview of field data obtained at each study scale. Note that plot and landscape scale1096

surveys were not conducted in 2013.1097

1098

Plot Scale Small Catchment Scale Landscape Scale

2013
survey

− - SfM: ground-based oblique 
photography

- SfM: aerial photography from a
UAV (50 m altitude)

- TLS

− 

2014
survey

- SfM: ground-based
oblique photography

- Terrestrial Laser
Scanning (TLS)

- Total Station (TS)

- SfM: ground-based oblique
photography

- SfM: aerial photography from a
manned AutoGiro (50 m
altitude)

- SfM: AutoGiro at 150 m
altitude

- SfM: AutoGiro at 250 m
altitude

- TLS
- TS

- SfM: AutoGiro at 150 m
altitude

- SfM: AutoGiro at 250 m
altitude

- TS

1099

1100
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Table 2. Summary of registration (i.e. MAE of targets) and georeferencing errors (i.e. RMSE on1101

control points) for 2013 and 2014 surveys. For the landscape-scale surveys (AG150m and1102

AG250m) values in parentheses indicate errors using GCPs over sub-catchment area only. For the1103

Oblique 2014 survey, values in parentheses indicate errors using GCPs in the lower catchment1104

only.1105

1106

TLS-based Surveys
Survey Year Points Registration

Error (m)
Georeferencing
Error (m)

TLS 2013 2013 351 Mn 0.003 0.002
TLS 2014 2014 317 Mn 0.002 0.002

SfM-MVS-based Surveys
Survey Year Points GCPs Georeferencing

Error (m)
Oblique 2013 2013 30.3 Mn 20 0.062
UAV 2013 2013 9.6 Mn 16 0.100
Oblique 2014 2014 99.4 Mn 21 (15) 0.210 (0.109)
AG50 m 2014 2014 2.4 Mn 29 0.086
AG150 m 2014 2014 717,000 110 (29) 0.100 (0.070)
AG250 m 2014 2014 313,000 75 (29) 0.150 (0.092)
Plots (5) 2014 2014 3.6−20 Mn 5 <0.01 

1107

1108
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Table 3. Summary of errors in the total station (TS) validation of SFM-MVS surveys and the TLS1109

2014 survey at three different scales. Note: no TS validation points overlapped with Plot 5.1110

1111

Survey Validation
points

ME (m) MAE (m) SDE
(m)

RMSE
(m)

Plot Scale (0.1 x 0.1 m grid)

Plot 1 9 0.008 0.023 0.031 0.030
Plot 2 18 -0.002 0.048 0.069 0.067
Plot 3 12 0.004 0.017 0.020 0.020
Plot 4 36 -0.003 0.025 0.032 0.032

Small Catchment Scale (0.1 x 0.1 m grid)

TLS 2014 515 -0.003 0.031 0.063 0.064
Oblique 2014 504 0.027 0.102 0.181 0.183
AG50 m 515 0.018 0.066 0.098 0.099
AG150 m 515 -0.020 0.121 0.181 0.182
AG250 m 515 -0.076 0.181 0.269 0.279

Landscape Scale (1 x 1 m grid)

AG150 m 730 0.012 0.298 0.446 0.445
AG250 m 730 -0.014 0.273 0.391 0.391

1112

1113
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1114

Table 4. Summary of errors in the validation of SfM-MVS surveys with the TLS surveys at the plot1115

and small-catchment scales (comparison of gridded data).1116

1117

Survey Validation
points

ME (m) MAE (m) SDE
(m)

RMSE
(m)

Plot Scale (0.1 x 0.1 m grid)
Plot 1 808 0.006 0.007 0.007 0.009
Plot 2 2829 0.000 0.010 0.016 0.016
Plot 3 2238 0.003 0.007 0.010 0.010
Plot 4 2040 0.000 0.014 0.019 0.019
Plot 5 1149 0.005 0.008 0.009 0.010

Small Catchment Scale (0.1 x 0.1 m grid)

Oblique 2014 277,000 0.023 0.101 0.183 0.184
AG50 m 333,000 0.022 0.055 0.077 0.080
AG150 m 327,000 -0.048 0.109 0.146 0.154
AG250 m 328,000 -0.133 0.208 0.349 0.374
UAV (2013) 331,293 -0.004 0.218 0.308 0.308

1118

1119

1120
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Table 5. Summary of: (i) sub-grid roughness statistics and (ii) cell-by-cell differences between TLS1121

and SfM sub-grid roughness for each plot and small catchment scale survey.1122

1123

Survey

Summary of sub-grid
roughness (mm)

Summary of Sub-grid
Roughness Differences (TLS –

SfM) (mm)

n Mean SD ME MAE RMSE SDE
Plot 1

TLS 1017 9.08 10.50
1.22 4.37 10.11 10.04

SfM 1017 7.85 6.21
Plot 2

TLS 2830 18.35 33.22
3.23 11.35 32.60 32.44

SfM 2830 15.12 16.78
Plot 3

TLS 2816 5.82 4.50
-0.53 2.70 4.48 4.45

SfM 2816 6.35 5.12
Plot 4

TLS 2442 11.60 20.60
2.10 7.94 21.11 21.01

SfM 2442 9.50 6.40
Plot 5

TLS 2047 8.82 12.67
-3.85 7.74 14.05 13.51

SfM 2047 12.67 12.54
Small Catchment
TLS (2013) 582591 30.84 92.92 -
UAV (2013) 332269 104.07 111.87 -73.34 96.24 145.23 162.49
TLS (2014) 324940 21.76 47.37 -

Oblique
(2014)

264528 38.98 98.35 -19.18 34.28 101.17 99.33

AG50 m 241103 19.90 31.73 2.81 18.95 38.98 38.88

AG150 m 13100 176.46 126.36
-

133.64
148.14 189.41 134.23

AG250 m 102 181.73 159.74
-

141.39
163.99 227.41 179.03
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1126

Table 6. Sediment budgets at the small catchment scale derived from TLS data, ground-based1127

oblique SfM surveys and repeat aerial SfM surveys (at ~ 50 m altitude).1128

1129

Survey Total Erosion
(m3)

Total
Deposition

(m3)

Net (m3) Catchment Average
Topographic Change

(mm a-1)
TLS -12.63 6.40 -6.24 -1.44
Oblique SfM -153.62 144.16 -9.46 -2.19
Aerial SfM (50 m) -258.72 136.35 -122.37 -28.34

1130
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